

Department of Energy

Oak Ridge Operations
Weldon Spring Site
Remedial Action Project Office
Route 2, Highway 94 South
St. Charles, Missouri 63303

June 15, 1988

ADDRESSEES

PHASE I CHEMICAL SOIL INVESTIGATION DATA REPORT FOR THE WELDON SPRING CHEMICAL PLANT/RAFFINATE PITS

Enclosed is a final copy(s) of the Phase I Chemical Soil Investigation Data Report for the Weldon Spring Chemical Plant/Raffinate Pits for your use. This investigation was designed to supply baseline soil information for the site.

Results from the sampling indicate the presence of elevated levels of nitrate, sulfate, and certain metals in the soils at the Chemical Plant and Raffinate Pit area. The data presented in the report will be used to develop the Chemical Soil Investigation Sampling Plan which will contain the overall soil characterization strategy for the site.

Sincerely,

R. R. Nelson Project Manager

Weldon Spring Site Remedial Action Project

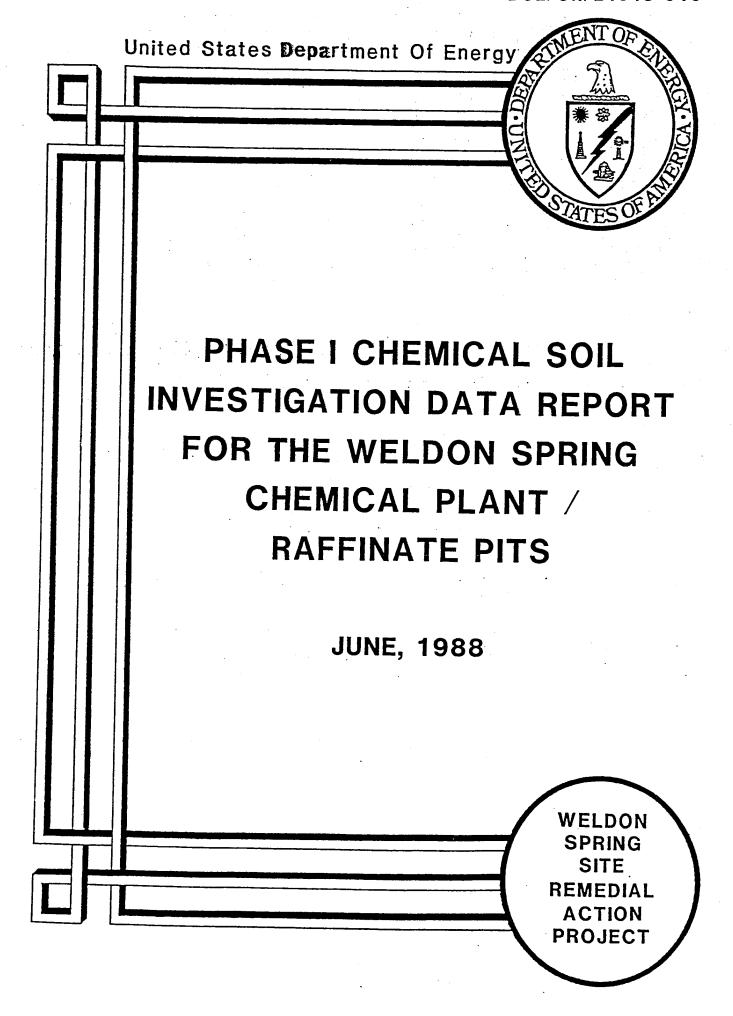
on Notron

Enclosure: As stated

ADDRESSEES FOR LETTER DATED JUNE 15, 1988

The Honorable Gerald Ohlms St. Charles County Courthouse 118 North Second Street St. Charles, Missouri 63301

Ms. B. Katherine Biggs, Chief (3 copies)
Environmental Review Branch
U. S. Environmental Protection Agency
Region VII
726 Minnesota Avenue
Kansas City, Kansas 66101


Mr. David E. Bedan
Division of Environmental Quality
Missouri Department of Natural
Resources
Post Office Box 176
Jefferson City, Missouri 65102

Mr. John Peterson
Energy & Environmental System
Division
9700 South Cass Avenue
Argonne, Illinois 60439

Mr. W. F. Manning, CE-50
Assistant Manager for Construction and Engineering
U. S. Department of Energy
Oak Ridge Operations Office
Post Office Box E
Oak Ridge, Tennessee 37831

Mr. Leon Heath Soil Consultants, Inc. 333 Mid Rivers Drive St. Peters, Missouri 63376

Mr. Edgar V. Ray Civil Engineer/Project Manager Superfund Branch U. S. Army Corp of Engineers 601 East 12th Street Kansas City, Missouri 64106

PHASE I CHEMICAL SOIL INVESTIGATION DATA REPORT

FOR

THE WELDON SPRING CHEMICAL PLANT/RAFFINATE PITS

PREPARED FOR:

U.S. DEPARTMENT OF ENERGY
OAK RIDGE OPERATIONS OFFICE
UNDER CONTRACT NO. DE-AC05-860R21548

PREPARED BY:

MK-FERGUSON COMPANY

AND

JACOBS ENGINEERING GROUP
ROUTE 2, HIGHWAY 94 SOUTH
ST. CHARLES, MISSOURI 63303

JUNE, 1988

PHASE I CHEMICAL SOIL INVESTIGATION

TABLE OF CONTENTS

Sect:	ion		Page
1.0	INTR	oduction	1
	1.1	Purpose	2
	1.2	Scope	3
2.0	SAMP	LING	3
	2.1	Sample Collection	3
	2.2	Equipment Decontamination	7
	2.3	Sample Preservation	8
	2.4	Sample Analysis	8
3.0	RESU	LTS	9
	3.1	Nitroaromatics	. 9
	3.2	Metals	11
		3.2.1 Elevated Concentrations Detected	11
		3.2.2 Background Metals Determinations	13
	3.3	Inorganic Anions	15
4.0	CONC	clusions	16
5.0	REFE	ERENCES	19
APPE	ENDIX	A - ANALYTICAL DATA	
3 005	NT TV	P - DATA OILATTTY	

LIST OF FIGURES

	DESCRIPTION	PAGE
2-1	Phase I Sampling Locations	4
	LIST OF TABLES	
=======================================		
TABLE NO.	DESCRIPTION	PAGE
TABLE NO.	DESCRIPTION	PAGE
TABLE NO.		PAGE
=======================================	=======================================	
2-1	Borehole Locations and Depths	
2-1	Borehole Locations and Depths Nitroaromatic Results for WSOW Waste	
2-1 3-1	Borehole Locations and Depths Nitroaromatic Results for WSOW Waste Lagoon No. 1	

1.0 INTRODUCTION

This report presents the Phase I Chemical Soil Investigation data for the Weldon Spring Chemical Plant/Raffinate Pits (WSCP/WSRP). Sample collection methods, sampling equipment decontamination techniques, analytical procedures, and analytical results are also presented in this report, as well as limited interpretations of those results. This investigation was not intended to fully characterize chemical soil contamination at the WSCP/WSRP. The objective of this investigation was to supply baseline soil information for development of a detailed Chemical Soil Investigation Sampling Plan that will more fully define the extent and magnitude of chemical soil contamination at the WSCP/WSRP.

The WSCP/WSRP portions of the Weldon Spring Site (WSS) consist of 217 acres located approximately 2 miles southwest of Weldon Spring, Missouri. Uranium ore concentrate was processed at the WSCP from 1957 until 1966 when it was known as the Weldon Spring Uranium Feed Materials Plant (WSUFMP). Process wastes from uranium ore concentrate processing are contained in four raffinate pits located on the site. Prior to 1955, the WSCP/WSRP area was part of the Weldon Spring Ordnance Works (WSOW). The WSOW produced trinitrotoluene (TNT) and dinitrotoluene (DNT) during World War II. Three complete TNT batch plants and portions of a fourth plant existed within the confines of the present WSCP/WSRP 217-acre area.

Prior to this investigation, only limited amounts of chemical data were available for the soils at the WSCP/WSRP. In 1975-76 the Department of Army (DA) documented low levels (ug/Kg) of nitroaromatics in WSCP soils (DACDIR, 1975). This report provided the only documentation of chemical soil contaminants at the WSCP/WSRP. In the spring of 1987, United Nuclear Corporation (UNC) was contracted through the Department of Energy (DOE) to perform a radiological characterization of the WSCP/WSRP soils.

Soil samples were split from selected radiological sampling locations by on-site personnel for chemical analysis. Field work began in May and was completed by mid-July 1987.

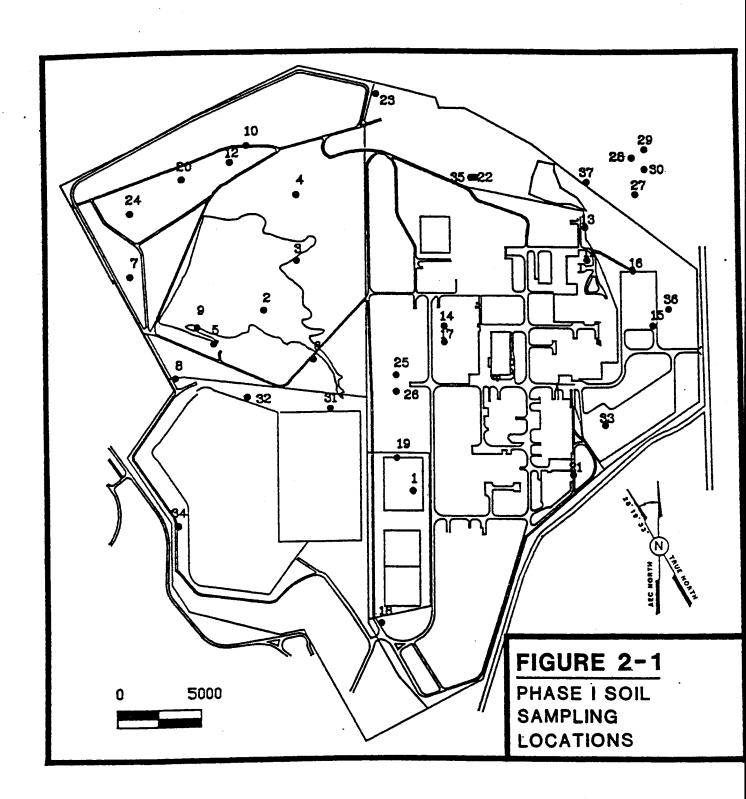
Analytical results were received in August 1987.

1.1 Purpose

This investigation was designed to provide baseline data regarding chemical soil contamination and to develop on-site background metals concentrations at the WSCP/WSRP. Sampling locations were selected to investigate potential chemical soil contamination source areas from TNT production and/or uranium processing and to provide areal coverage of the site. Samples were collected concurrently with the radiological soils characterization performed by UNC. The results of this investigation and previously collected data have been used to

develop a comprehensive chemical soil characterization sampling plan.

1.2 Scope


This sampling effort consisted of collecting 149 samples from 37 locations. Sampling locations were selected by evaluating WSOW and WSUFMP processes. Potential source areas were identified and targeted for sampling. Additional locations were added to provide areal coverage.

Analytical parameters were selected based on results of the Phase I Water Quality Assessment which detected elevated levels of nitroaromatics, nitrate, sulfate, fluoride and metals in the groundwater beneath the WSCP/WSRP. No organics (except nitroaromatics) were detected, so soil samples were not analyzed for organic compounds.

2.0 SAMPLING

2.1 Sample Collection

Soil samples were collected from 37 locations at or near the WSCP/WSRP. Figure 2-1 shows the sampling locations. Thirty-two locations were within the fenced WSCP/WSRP boundary. Four of the remaining five boreholes were drilled in WSOW Waste Lagoon

No. 1, located just northeast of Frog Pond to, investigate this potential source area.

The final borehole was located between the WSCP and the WSOW waste lagoon. Table 2-1 details borehole coordinates, numbers, depths and date drilled.

Samples were collected using a truck-mounted CME-55 drill rig employing 6 5/8" outside diameter (0.D.) hollow stem augers for drilling and a 3" O.D. by 24 inch long split tube sampler.

Samples were collected continuously by driving the split tube sampler with a 140 lb. drop weight.

After driving the sampler two feet, it was removed from the borehole and taken to a shaded area prior to opening, in order to prevent the photolysis of nitroaromatic residues in the soil. Samples were obtained using a stainless steel spatula to fill the sample containers. Samples were collected in the following increments at most locations:

0 to 6 inches
6 to 24 inches
24 to 48 inches
48 to 72 inches

If the borehole advanced beyond 6 feet, samples were composited over 4- to 10-foot intervals. The 0- to 6-inch interval was

Table 2-1
Boring Locations and Depths

=========			=======================================
Location No.	Location Coordinates West,North	Date Sampled	Depth of Borehole (ft.)
1 2 3 4 5 6	SO-50700,99400 SO-51600,100500 SO-51400,100800 SO-51400,101200 SO-51900,100300 SO-51300,100200 SO-52400,100715 SO-52131,100094	05/29/87 06/02/87 06/02/87 06/02/87 06/02/87 06/02/87 06/02/87	12 9 6 6 10 6 6
8 9 10 11	SO-52000,100400 SO-51700,101500 SO-49600,100800 SO-51800,101400	06/02/87 06/03/87 06/03/87 06/03/87	15 6 24 6
12 13 14 15	SO-49610,10100 SO-50500,100395 SO-49200,100400	06/03/87 06/04/87 06/04/87	14 6 6 6
16 17 18 19	SO-49320,100735 SO-50500,100300 SO-50900,98600 SO-50800,99600	06/04/87 06/04/87 06/04/87 06/04/87	6 6
20 21 22 23	SO-52090,101300 SO-49700,99500 SO-50300,101300 SO-50910,101803	06/09/87 06/09/87 06/09/87 06/09/87	6 6 6
24 25 26 27	SO-52400,101100 SO-50800,100100 SO-50800,100000 SO-49300,101200	06/09/87 06/10/87 06/10/87 06/15/87	6 20 6 3 4
28 29 30	S0-49320,101420 S0-49240,101470 S0-49240,101350 S0-51200,99900	06/15/87 06/15/87 06/15/87 06/26/87	4 3 13 16
31 32 33 34 35 36	SO-51700,99975 SO-49500,99800 SO-52119,99200 SO-50325,101300 SO-49100,100500	06/29/87 06/30/87 06/30/87 06/30/87 07/02/87	16 6 16 6 6
37	SO-49600,101275	07/02/87	O

collected using a post hole digger since the split tube sample did not provide enough soil for both chemical and radiological analyses.

Sample collection information was recorded on field data forms. Sample chain-of-custody was maintained throughout the sample collection and shipping process according to approved WSSRAP procedures.

2.2 Equipment Decontamination

Soil sampling equipment was cleaned using a hybridized decontamination procedure designed to protect against cross-contamination by nitroaromatics and other chemical species. All augers, drill rods, and split tube samplers were washed using a hot water high-pressure washer. Augers and drill rods were cleaned between boreholes while split tube samplers were decontaminated between samples.

After washing with hot, high-pressure water, the split tube samplers were allowed to air dry. They were then rinsed with toluene, followed by acetone and hexane. The toluene rinse was used to dissolve any nitroaromatic residues. Acetone and hexane rinses were employed to remove toluene and other contaminants not removed by the hot water high-pressure wash. The split tube samplers were again allowed to air dry prior to being reassembled. All rinsing solvents were collected.

Stainless steel spatulas and pans and the post hole digger were washed with distilled water, followed by the same solvent rinse sequence as used on the split tube samplers. This procedure was performed before every sample.

Field personnel wore new disposable vinyl gloves when collecting soil samples. Gloves were changed after decontaminating sampling equipment.

2.3 Sample Preservation

After soil samples were collected, the filled sample containers were placed in a cooler with Blue Ice or similar reusable ice product. All samples were chilled to 4 degrees centigrade. This temperature was maintained throughout sample collection and shipment. No other preservation techniques were used.

2.4 Sample Analyses

Soil samples were analyzed by metaTRACE, Inc. of St. Louis,
Missouri. Analytical parameters included nitroaromatics,
metals, nitrate, sulfate, chloride, fluoride, and percent
moisture. Selected surface samples were analyzed for asbestos.
Precleaned sample containers were supplied by metaTRACE, Inc.

Analytical parameters were selected based on known or suspected contaminants from the WSOW and WSUFMP.

Nitroaromatic analyses were performed according to the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) High Pressure Liquid Chromatography (HPLC) methodology. Metals analyses were performed to U.S. EPA Contract Laboratory Program (CLP) standards. Nitrate, sulfate, chloride and fluoride analyses were performed according to EPA method 300.0.

3.0 RESULTS

Analytical results are presented in Appendix A of this report. Each group of analytical parameters is discussed in detail in the following sections. All interpretations made in this report are based on analytical results, field observations, past waste management practices, aerial photography, and the draft UNC report "Radiological Characterization of the Weldon Spring, Missouri Remedial Action Site", October 1987.

3.1 Nitroaromatics

All soil samples were analyzed for nitroaromatics using HPLC according to USATHAMA methodology. No detectable levels of nitroaromatics were present in any samples collected on-site. Detectable levels were measured in soil samples taken from the waste lagoon used in WSOW production located off-site, just north of the WSCP (Figure 2-1). Table 3-1 presents nitroaromatics results from soil samples collected in WSOW Waste Lagoon No. 1.

TABLE 3-1
Hitroarometics Results for the WSOW Waste Lagoon No. 1

						Concentra	tion UG/G		
Soil Location Number	Coordinates	Depth Interval	Date Sampled	2,4,6- TNT	2,4-DNT	2,6-DNT	Nitro- Bensens	1,3,5- Trinitro- Benzens	1,3- Dinitro- Bensene
27	SO-49300,101200	1.5.2.5	06/15/87	. 93	<1.02	1.4	<1.96	<0.77	<1.23
21	50-49300,101200		06/15/87	1.1	2.3	<1.78	<1.82	<0.72	<1.14
28	S0-4932 0,101420	1.1.5	06/15/87	52.4	7.6	<1.82	<1.86	4.0	0.63
,	SO-49320,101420		06/15/87	*	*	•	•	*	*
29	SO- 49240,101470	1.2	06/15/87	17.2	3.0	<1.78	<1.82	2.2	<1.13
27	SO-49240,101470		06/15/87	13.7	2.2	<1.76	<1.80	3.7	<1.12
30	SO-49240 ,101350	0.3	06/15/87	307	13.8	<1.77	2.3	2.8	0.67
30	50-49240,101350	- • -	06/15/87	<1.52	0.56	<1.79	<1.83	1.9	<1.14
	\$0-49240,101350		06/15/87	<1.48	<0.92	<1.74	<1.77	1.2	<1.11
	50-49240,101350		06/15/87	<1.55	<0.97	<1.82	<1.86	0.48	<1.16

Source: WSSRAP, 1987

Soil sampling locations were not chosen to confirm previous positive results for nitroaromatics as reported in the 1976 Department of Army Report "Assessment of Weldon Spring Chemical Plant in St. Charles Missouri--Final". The validity of this previously collected data and the need for additional sampling will be discussed in the Chemical Soil Investigation Sampling Plan.

3.2 Metals

All soil samples were analyzed for CLP metals and lithium. Lithium was used in pilot studies at the WSCP and is present in the WSRP and groundwater. Acid usage in both explosives production and uranium processing make metal contamination of the soil a distinct possibility. Metal contamination of the soil has been documented at other ordnance works such as the West Virginia Ordnance Works and Alabama Army Ammunition Plant (ESE, 1986).

3.2.1 Elevated Concentrations Detected

Several metals were detected in elevated concentrations in several soil samples. Lead, barium and zinc were present in concentrations above background and appear to be related to WSOW sources. Based on the sampling effort, there appears to be a relationship between elevated levels of lead and zinc.

Sample-specific analytical results are presented in Appendix A of this report.

The use of lead in explosive production equipment has been documented at other ordnance works (ESE, 1986) and is the primary non-nitroaromatic soil contaminant.

Lead was used in WSOW process buildings and as flooring to minimize static electricity. Acidic spills could have dissolved lead and other metals. Spill control probably consisted of neutralization with lime or soda ash and/or dilution followed by washing.

Lead concentrations in the soil at the WSCP ranged from <0.6 ug/Kg to 43,000 ug/Kg. The highest value was observed at Location No. 3 (Figure 2-1) north of Ash Pond in the 2- to 4-foot interval downslope from the final production area of TNT Line No. 2.

Elevated zinc levels were present with elevated lead levels in numerous samples. Zinc concentrations were much lower, however, only ranging up to 820 ug/Kg. The source of the zinc contamination is not known at this time.

Barium was also present in elevated concentrations in select samples. Up to 4,000 ug/Kg of barium were detected in soils

from the Ash Pond area. The source and/or reason for barium contamination is not known at this time.

3.2.2 Background Metals Determinations

Another purpose of this investigation was to establish background metals concentrations in on-site soils. On-site background concentrations were determined statistically. Concentrations for each metal were analyzed statistically to determine average background concentrations and ranges. Frequency histograms were plotted for each metal. These histograms were evaluated to detect concentrations outside of the normal distribution of the population. These elevated values were removed from the background data set prior to calculating the arithmetic mean, arithmetic standard deviation and the geometric mean. This data is presented on Table 3-2 with the background ranges.

Several metals appear to be present as low-level contamination throughout soils at the WSCP/WSRP. These metals include: aluminum, antimony, barium, iron, lead, magnesium, manganese, nickel, vanadium and zinc. Background samples will be collected from off-site locations during the overall soil characterization as described in the Chemical Soil Investigation Sampling Plan. These "on-site" background values will be compared to background

TABLE 3-2
Statistical Data for Background Metals
Concentrations in Soils at the USCP/USSP

compound				Arithmetic		nekground nges	
	Sample Size	Arithmetic Mean mg/Kg	Geometric Mean mg/Kg	Standard Deviation mg/Kg	Lou mg/Kg	High mg/Kg	
	142	12,536	11,350	4,902	1250	27,700	
A1	98	29	25	8	2	40	
Sb	114	6	6	4	2	15	
As Ba	140	161	145	70	25	390	
Be	129	1	1	1	< DL	6	
Cd	125	3	3	1	< DL	7	
Ca	114	3,495	3,044	1,839	190	9,300	
Cr	144	24	23	6	2	. 42	
Co	144	16	14	7	6	40	
مت	143	15	14	6	3	34	
Fe	139	18,636	17,914	5,306	8,500	35,400	
Pb	127	29	25	16	7	84	
Li	92	10	9	3	< DL	17	
Mg	133	2,437	2,256	956	417	5,900	
Mn.	127	495	370	334	49	1,400	
Hg		s than the detec	tion limit of	0.1 mg/Kg			
Ni.	138	19	18	7	7	43	
ĸ	145	757	698	311	255	1,701	
Se	Rackground les	s than the detec	tion limit of	0.5 mg/Kg			
Ag	96	3	2	2	1	13	
Na.	136	486	437	202	49	982	
T1	Background les	s than the detec	tion limit of	1.0 mg/Kg			
v	141	35	34	7	6	54	
2n	141	45	39	29	6	220	

< DL - Less than detection limit

Source: WSSRAP, 1987

samples collected as described in the Chemical Soil Investigation Sampling Plan.

3.3 Inorganic Anions

Soil samples collected during this investigation were also analyzed for nitrate, sulfate, fluoride and chloride. Elevated levels of nitrate and sulfate were observed at numerous locations, most commonly in surficial soil samples. This is to be expected since the nitrates probably originated from neutralized nitric acid. Nitric acid was used both at the WSOW and the WSUFMP. The highest concentration of nitrate (868 mg/Kg) was detected in a ditch carrying waste from a WSOW process building at Location 36. Elevated nitrates and sulfates were also observed in WSOW Waste Lagoon No. 1 north of the WSCP.

Elevated sulfate levels were occasionally associated with elevated nitrate levels, especially in the WSOW Waste Lagoon. This would be expected due to the use of mixed nitric and sulfuric acid in TNT production. Other areas of sulfate contamination are also probably related to WSOW production due to the use of sulfuric acid as a catalyst. Additional investigations are required to determine the source and extent of this contamination.

Some slightly elevated chloride and fluoride levels are present

Some slightly elevated chloride and fluoride levels are present in WSCP/WSRP soils. The source of these species is not known at this time.

Selected surface soil samples were analyzed for asbestos based on the usage of asbestos in WSOW process buildings. All submitted samples contained less than 1 percent asbestos and no elevated levels were observed.

4.0 CONCLUSIONS

This investigation was designed to supply baseline soil information and establish on-site background metal concentrations. This investigation indicates the presence of elevated levels of nitrate, sulfate and certain metals in the soils at the WSCP/WSRP. Limited conclusions regarding the extent and magnitude of contamination can be made based on the data collected. The data presented in this report will be used in developing the Chemical Soil Investigation Sampling Plan, which details the overall soil characterization strategy for the Weldon Spring Site.

Several preliminary conclusions can be made from the data presented in this report. These conclusions are:

 Nitroaromatic compounds were not detected in the on-site soil samples collected in this investigation. Additional sampling is required for WSOW sources, particluarly in production areas, surface drainages and the burning ground area.

- 2. Nitroaromatics bind tightly to soil particles at the WSCP/WSRP. This was evidenced by the soil samples collected from the WSOW wastewater lagoon located just north of the WSCP. Nitroaromatic concentrations decreased from percent levels (0.3%) to less than the detection limits through eight feet of soil. This information will be used when designing the overall chemical soil characterization sampling plan.
- 3. Areas of nitrate and sulfate contamination appear to be related to WSOW processes and sources.
- 4. There appears to be low-level contamination by several metals including aluminum, antimony, barium, iron, lead, magnesium, manganese, nickel, vanadium and zinc. Isolated undetected areas of higher concentration may exist for these metals. Additional investigations are required to determine true background conditions and assess contaminant extent.
- 5. There do not appear to be any elevated concentrations of beryllium, cadmium, mercury, selenium or thallium in soils at the WSCP/WSRP.

- 6. Elevated asbestos levels are not present in surficial soils as a result of WSOW building demolition. Elevated levels of asbestos may be present near overhead piping in the WSCP.
- 7. There do not appear to be any significant on-site soil contamination areas contributing to groundwater contamination.

These conclusions will be used to guide further soil investigations as detailed in the Chemical Soil Investigation Sampling Plan. The data in this report will be factored into the overall soil contamination assessment and used in the Remedial Investigation Report.

5.0 REFERENCES

- Department of Army, 1976. <u>Assessment of Weldon Spring</u>

 <u>Chemical Plant in St. Charles, Missouri Final.</u>
 - Environmental Science and Engineering (ESE), 1986.

 West Virginia Ordnance Works: Endangerment Assessment
 for Sewerlines, the TNT Manufacturing Area, and the
 Burning Grounds, Final Report. June, 1986.
 - MK-Ferguson, 1987. Phase I Water Ouality Assessment.

 Prepared for Department of Energy Oak Ridge Operation
 Office.
 - United Nuclear Corporation, 1987. Radiological

 Characterization of the Weldon Spring, Missouri Remedial

 Action Site. October, 1987.

APPENDIX A

APPENDIX A

Phase I Soll Metals Results

															Š	Concentration MG/MG	ion A	3/KG							
Location No.	Location Soll Sample No. Coordinates and Depths	Date Sampled	¥	ક	ર	2	2	8	3	8	8 8	2 8		8	=	ž	£	12 M	×	3	\$	3	#	>	អ្ន
-	SO-50700, 99400-0, 4-0587 SO-50700, 99400-4, 8-0587 SO-50700, 99400-8, 12-0587	05/29/87 05/29/87 05/29/87	16000 2760 2100	n 81 n		113 288 252	1.2		3190 3900 3550	30 41 3	6 1 30 20 16 2	10 15400 20.4 26200 24 35400		36	9 9 9	2100 3500 3 3420	187 3400 420	0.2 11 0.2 24 U 28		655 U 1300 U 1020 U		451 408 516	2 2 2	ង ន ន	# 8 #
~	SO-51600,100500-0,0.5-0687 SO-51600,100500-0,5.2-0687 SO-51600,100500-2,4-0687 SO-51600,100500-4,6-0687 SO-51600,100500-6,9-0687	06/02/87 06/02/87 06/02/87 06/02/87	4915 8400 7900 11000 8350	2 6 2 2 2	2.8 11 U 3 5.8	59 78 96 86	1.3 2.6 0.7 0.8	4.2 3.9 1.3 2.6	7520 6400 1300 1015 1220	11. 12. 13. 14.	16 4 16 4 16 14	27 141 46 300 7 101 8 18 8 32	30000 2 30000 2 10100 18400 3	23 8 8 26	5 6 5 5 5	890 (1050 2) (1050 1)	650K 210K 442K 560K 130K	U 26 U 36 U 10 U 10	725 860 1 543 1 292 1 292		1.3 U U	335 460 286 98 128	U U U	ខ្លួងបង្ខ	220 178 22 25 20
m	SO-51400,100800-0,0.5-0687 SO-51400,100800-0.5,2-0687 SO-51400,100800-2,4-0687 SO-51400,100800-4,6-0687	06/02/87 06/02/87 06/02/87 06/02/87	3850 6000 5900 11300	D 7 00	2.1 1.5 4.2	39 71 208	0.9 1 U 1.2	2 3.5 10.5 3.8 2	4240 12800 9300 20600	12 17 42 24	10 10 114 114 114 114 114 114 114 114 11	22 14 30 20 34 82 19 20	14930 20500 82500 4 20400	12 45 43000 29	5558	427 1700 2900 3900 1	1113 280 457 1400	U 14 U 22 U 20 U 19	531 2 530 0 1400 9 813	2882	1.1 4.7 2.5	275 415 650 1119	5 5 5 5	ជនឯក	177 12 337 83
•	SO-51400, 101200-0, 0.5-0687 SO-51400, 101200-0.5, 2-0687 SO-51400, 101200-2, 4-0687 SO-51400, 101200-4, 6-0687	06/02/87 06/02/87 06/02/87	10120 24100 10900 8150	• 11 • -	4.6 7.3 2.5	111 172 215 270	0.0 6.0 7.0 8.0	6. 4. 4. 6. 6. 4. 6. 5. 5.	37400 3500 2200 1710	18 32 20 15	2 2 2 2 2	14 15 21 30 12 16 7 16	15900 30800 16900 16300	21 12	7 114 U	2210 3400 2600 1660 2	665 140 550 2550	U 18 U 18 U 20 U 16.4		076 U 6600 U 740 U 317 U		•	5555	***	2 2 2 2
ø	SO-51900,100300-0,0.5-0687 SO-51900,100300-2,4-0687 SO-51900,100300-2,4-0687 SO-51900,100300-4,6-0687 SO-51900,100300-4,6-0687	06/02/87 06/02/87 06/02/87 06/02/87	11635 18800 16800 18100 14500	7.8 113 10 U	u u v	167 360 133 43	0.9 1.1 0.7 0.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6600 4700 2700 3050 3300	22 22 15 15	11 7 7 12 12 12 12 12	17 18 21 22 6 9 9 16 10 16	18300 222000 9600 16600 1 16500	28 115 115 13.6	7 12 8 7 U	2300 3500 1950 1800 1900	500 280 50 50 105	U 28 U 10 U 11 U 17		1040 U 1015 U 1250 U 506 U 634 U				X	* * * * * * * * * * * * * * * * * * * *
v	SO-51300,100200-0,0.5-0687 SO-51300,100200-0.5,2-0687 SO-51300,100200-2,4-0687 SO-51300,100200-4,6-0687	06/02/87 06/02/87 06/02/87 06/02/87	6700 12600 10300 14500	6.7 7 U	22.3	73 187 152 204	8.0 9.0 8.0 7.0	2.2 2.3 2.4.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	34400 29000 35000 34900	17 21 18 20	7 19 13	16 17 16 21 21 10 12 11	12000 21700 16400 16600	16 23 15 14	D 68	2500 3920 2350 2040	355 1030 750 540		11 8 118 5 115 5 14 10	832 1 529 1 520 1	7.1 D D D	7 400 U 270 U 280 U 312	555	* * * *	32 7 2

Phase I Soil Metals Results

																	5		1	11-3					Date	
																ntrati	£ 8	Concentration my No Location Sold Surpre	107.7	1						
1	Coordinates and Depths	Sampled	2	જ	2	2	2	3	8	S 5	8	- Fe	£	17	£		£	# H		æ	*	룊	Ħ,	>	ន	_
1	SO-52400,100715-0,0.5-0687 SO-52400,100715-0.5,2-0687 SO-52400,100715-2,4-0687 SO-52400,100715-4,6-0687	06/02/87 06/02/87 06/02/87 06/02/87	11000 8120 15200 8200	2262	D 4 7	207 207 209	0.6 2 0.9 2 0.9 3 0.8 2	2.4 6 2.3 7 3.4 13 2.3 10	6100 1 7000 2 13300 2	19 11 23 16 27 19 20 17		48 17100 16 20500 14 20500 10 15700	00 1100 00 590 00 285 00 128	1			520 782 014 880	U 14 U 18 U 17 U 17	1110 950 990 481	u u u u u u u u u u u u u u u u u u u	U U 1.1	957 957 957	5555	2 2 2 2	2	
	SO-52131,100094-0,2-0687 SO-52131,100094-2,4-0687 SO-52131,100094-4,6-0687	06/02/87 06/02/87 06/02/87	\$ \$ \$	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	£ £ £	2 2 2	2 2 2	* * *	\$ \$ \$		* * * *	\$ \$ \$	222	222	\$ \$ \$	\$ \$ \$	2 2 2	£ £ £	\$ \$ \$	£ £ £	2 2 2	
	SO-52000,100400-0,0.5-0687. SO-52000,100400-0.5,2-0687 SO-52000,100400-2,4-0687	06/02/87 06/02/87 06/02/87	12000 21250 12000	7 12 U	3.4 1	4000 1560 179	0.8	2 3 3	2600	31 1 36 1 23 2	13 1 18 2 29 1	17 21900 22 28600 11 16800	96 94 71 00 71 17		9 19 16 31	1900 2 3132 5 1800 17	285 564 1780	U 29 U 29 U 18	1340 1650 466	009	1.1 1.2 U		5 5 5	* * *	2 8 8 5	
	SO-52000,100400-4,6-0667 SO-52000,100400-6,10-0667 SO-52000,100400-13,15-0667 SO-51700,101500-0,0.5-0667 SO-51700,101500-2,4-0667 SO-51700,101500-4,6-0667	06/02/87 06/02/87 06/03/87 06/03/87 06/03/87	19440 20000 27700 10074 12364 15023 9278	7 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2.6 2.6 3.8 4.2 8.8 5.4	120 111 286 153 233 178	7.00 9.00 9.00 9.00 1.20 1.00 1.00 1.00	2.2. 3.6. 5. 6. 5. 6. 5. 6. 5. 6. 5. 6. 5. 6. 5. 6. 5. 6. 5. 6. 5. 5. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	2904 2720 5000 5000 5762 1925 1772	23 23 1 39 3 18.4 1 24 2 27 27 2	112 1 12 1 10 1 10 1 16 9	8 16000 13 23000 13 30700 13 16044 12 22361 20 25437 9.1 15912	16000 10 23000 16 30700 16 16044 23 22361 32 25437 42 15912 28		2 2 2 2 3 9 4 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	2124 2400 3350 10 2046 4 1891 22 2799 11	96 65 1008 475 2014 1357 1045	U U U 16 U 16 U 16 U 17 U 17	11 475 16 728 83 990 16.2 890 16 725 24 856 19 333		11.0 11.0 4.0 4.4	663 5 554 1 399 4 579	1.2 0 0 0	8 2 3 8 2 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	SO-49600,100800-0,0.5-0687 SO-49600,100800-0.5,2-0687 SO-49600,100800-4,6-0687 SO-49600,100800-6,10-0687 SO-49600,100800-10,20-0687 SO-49600,100800-10,20-0687	06/03/87 06/03/87 06/03/87 06/03/87 06/03/87 06/03/87	4341 9397 124230 11725 14987 14049	% E E D 0 1. E	8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	51 104 149 145 163 97.5	0.9 5 1.1 6 1.1 2 0.8 2 0.8 4 1.7 2	2	87084 3653 3750 6924 3921 3818	22 23 23 23 23 23 23 23 23 23 23 23 23 2	12 15 17 17 17 17 17 17 17 17 17 17 17 17 17	15.0 8 15 13; 13 15; 12.5 166 17; 17 13; 14 19	862 57.1 1376 43 15904 29.8 16600 15.2 17177 28 13530 26 19740 38		7.3 194 8 24 7.3 2 U 2 8.4 2 U 1	24354 24354 2183 2206 2206 2588 1864 1864	328 631 448 387 378 52 227	0 13 0 17. 0 17. 0 22 2	r 10	573 U 705 U 548 U 472 U 696 U 738 U 738 U 554 U	9.6.2.2.2.2.9.6.9.6.9.6.9.6.9.6.9.9.9.9.	591 2 567 2 206 2 206 5 172 2 682 3 387 9 400		* * * * * * * * * * * * * * * * * * * *	3 8 8 8 8 8 8	

Phase I Soll Metals Results

				1																						ļ
															Š	Concentration MG/NG Location Soil Sample	Ton W	3/105 1	ocati	18 18	1 Sent	ole.			Dete	ų
¥.	Coordinates and Depths	Sampled	7	æ	2	2	2	8	3	is a	8	Ou Fe	P.		3	¥.	£	<u>=</u>	Į.	=	8	2	Z.	ı	>	5
13	SD-51800 101400-0 0-5-0687	06/03/87	8600	91	2.8	6/	1.3	3.4	8400	22	13 1	19 220	22000 3	34	9 1	1300 2	252	2	22	046	0 2	2.4 5	203	_		•
1	SO-51800 101400-0 \$ 2-0687	06/03/87	14000	16	•					26	16 47	470 182	18250 17		13 5	9 0065	682	0		4 80	U 3	•	405			52
	SO-51800 101400-2 4-0687	06/03/87	22000	: 2	•			8.	2800	36	28 2	28 315	31500 34	34.8	15		965		30 1	1150	7 0		314			8
	50-51800,101400-4,6-0687	06/03/87	12700	13	9		_	3.8	2600	27	16 1	17 237	23700 2	29 1	15 3	3200 8	803	D	72	895	n 3	3.4	630	>	3	:
:	670 4 0 00100	60,007	5	5	4	145	x	9	21400	76	13 1	17 166	16600 6	9	11	2000	904	5	18	1300	7 0	•	430	5	_	8
1	50-49610,10100-0,0.3-0687	06/03/87 165000	25.50	.	, ,											2850	554	D	19	475	0	~	166	>	*	35
	SO-49010, 10100-0.5,2-0.007	06/03/87 147000	147000	•	. 5			2.7				13 210		16		1820	740	>	22	200	U 1		174	Þ	8	42
	SO-49610 10100-4 6-0687	06/03/87	8800	. 6.			. 6	2.0	2500		23			25	U 11	11000 1	1550		14	440	U 1		407	5	8	11
	SO-49610_10100-6_10-0687	06/03/87	8300	==	2		_	4.9	2250	25		21 550		4	5	9800	3750	5	34	255	2		240	5	2	9
	SO-49610, 10100-10, 14-0687	06/03/87 161500	161500	=======================================	•	430	2.5	4.5	6300	 58	21 2		26500 3	31		2500 2	2600		&	3 5	о В	3.4	435	>	#	8
;			8	\$	٥	8	=	=	127000	*	01		12000 3	*) 1	45300 2	285	Þ	23 1	1560	5	D	1620	>	S.	\$
=	SO-50500, 100393-0, 0.3-088/	06/04/07	955	2 =	` =	3 2	, ,		\$650			18 15		-	5		134	Þ	==	720	n	D	808	Þ	2	39
	SC-50500,100355-0:5,2-0057		15500	=	-	2	· >	>	4400	=	U	_	14100	Ð		2664 1	139		2	732	5	5	3	Þ	ม	92
	50-50500,100395-4,6-0687	06/04/87	15400	9	>	720	•	>			388			48	D	7 00 7	9100	Þ	42	726	D	>	8	1.2	7	8
;		06/06/87	1400	76	=	162	=	5	15400	28	92	28 17	17700 4		Þ	0064	360	Þ	14	1400	D	D	420	n	*	3
7	50-49200, 100400-0, 0.3-0667		0076	3	, 5	25	•		188000					Þ	n n		210	=	18	810	Ð	, ,	1620	5	2	3
	SO-49200, 100400-2, 4-0687		18900	2	9	124	Þ	>	31000	21	11	9 11:	11500	ם		4300	124	D		823	5	Þ	250	>	19	1
	50-49200,100400-4,6-0687	06/04/87	16080	2	>	144	Ð	Þ	3500	29	3	10 17	17000	n	D D	2000	8		4.8	576	D	-	1350	>	2	35
;		60,700,700	8	Ş	=	č	-		130000	2	•	18 11	11600	69	2	78000	994	Þ	21	1040	5	'n	2000	D	ສ	5
16	50-49320, 100/35-0, 0.5-08/			? :	• :	3 9	} :		Ş					=	D		850	>	33	1100	U 1.	.20	008	Þ	37	820
	50-49320, 100735-0.5, 2-0687		00021	2	- :		- =		12800			2 2		, ,			954			8	D	•	225	P	8	=
	50-49320,100733-2,4-066/	/9/10/90	7070	3)	2	• :							=		-	Š	=	19	1150	D	Þ	434	-	5	ያ
	50-49320,100735-4,6-0687	06/04/87	15900	-	>	22	>	-	2/000			•		•			}									

Phase I Soil Metals Results

															Concent	Concentration MG/KG Location Soll Sample	MC/KG	Locat	S ro	1. Sem	ple.			Dete	
₹	Coordinates and Depths	Sampled	7	ક્ક	श	Ba	2	8	చ్	ಕ	3	3	Fe	Pb 1	Li	¥.	#	He M1	¥	8	₹ .	4	ដ	>	ន
17	SO-50500,100300-0,0.5-0687 SO-50500,100300-0.5,2-0687 SO-50500,100300-2,4-0687 SO-50500,100300-4,6-0687	06/04/87 06/04/87 06/04/87 06/04/87	11000 17500 24600 13900	U 18.6 22 17		146 188 124 220	U 1.1 1.3		15600 6100 4600 2900	26 35 25	9 28 13	13 13 13 13 14 17 23 14 17 23 14 14 14 14 14 14 14 14 14 14 14 14 14	13800 2 21000 2 23200 3	29 29 33	2 2 2	4500 4 2800 13 3300 2200	415 1300 90 0	U 12 U 23 U 23 U 23	1024 1684 1780	2 2 8 1	3.4 d.	1 1460 310 1150 573	5555	8 3 6 8	8 22 23
18	\$0-50900,98600-0,0.5-0687 \$0-50900,98600-0.5,2-0687 \$0-50900,98600-2,4-0687 \$0-50900,98600-4,6-0687	06/04/87 06/04/87 06/04/87 06/04/87	6500 5900 14488 14149	8	u u 13.2	72 70 390	U 1.2 1	9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	180000 185000 3339 3607	30 27	10 10 17	27 9 20 8 22 22 19 20	9550 42 8500 38 21801 36 20404 39.	•	10 2 8 8 3 3 3 3	5700 2400 3388 3043 4	522 660 705 1546	U 13 U 12 U 42	98 66		V 0 4.9	-	555 5	2 2 2 2	2 2 2 8
50 70	SO-50800, 99600-8, 9-0687 SO-52090, 101300-0, 0, 5-0687 SO-52090, 101300-0, 4-0687 SO-52090, 101300-4, 4-0687	06/04/87 06/09/87 06/09/87 06/09/87	13299 10116 13392 15240 9622	7 52 52 n	5.7 10.6 10.8 5.0 2.9	103 138 161 193	1.1 0.9 0.3 0.3	3. 2. 3. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	2121 14603 3087 2686 2335	22 23 11 118 118	16 19 29 14 11 11 11 11 11	11 20 18 17 14.0 24; 24.0 25; 11.5 166	20763 44 17578 5 24242 5 25431 4 16062 7	44.7 8 55 8 58 10 58 10 48 13 7.7 9.7		1396 4: 1831 : 1843 11 3796 : 2419 4	4559 741 1865 810 464	U 14 U 23 U 31	499 845 726 1181 608	2 2 2 2 2	5.1 5.7 5.5 0.5	25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3 8 3 3 2	2 3238
21	SO-49700, 99500-0, 0.5-0687 SO-49700, 99500-0.5, 2-0687 SO-49700, 99500-2, 4-0687 SO-49700, 99500-4, 6-0687	06/09/87 06/09/87 06/09/87	5962 15470 14925 13038	38 113 U	2.8 3.3 4.9	77 140 282 236	2 2 6 4	7.0 5 2.9 4.1 1 2.6	53586 2934 16812 2472	# # # # # # # # # # # # # # # # # # #	15 27 10 16 27 18 15 9.	الم الم	11451 1 21462 13 21778 29 16415 22	132 9 13.1 7 29.0 14 22.2 9	9 13 7.7 2 14.3 4 9 2	13014 2 2571 4 4085 24 2002 8	291 416 2464 862	0	50 853 18 741 59 929 11.0 300		13 1.0 4.3 2.0	523 377 217 617	u u u 1.2	2 8 8 4	139 26 26
2	SO-50300,101300-0,0.5-0687 SO-50300,101300-0.5,2-0687 SO-50300,101300-2,4-0687 SO-50300,101300-4,6-0687	06/09/87 06/09/87 06/09/87	8114 14391 10382 7552	D D D D	2.0 8.7 7 4.0	172 266 76 142	0.6	2.2.2.3.2.4.2.4.2.4.2.4.2.2.2.3.3.2.4.2.2.3.3.3.3	2996 2426 3470 2423 11	16 1 20 1 15 1 18.4 1	14 8. 12 7. 6 9. 15 16	0 0 0	11480 26. 16908 25 13658 14. 15856 22	ø, r.	6.0 3.8 3.0 3.0 3.1 3.1	1349 13 1059 3 1935 1	1300 385 49 175	U 17.5 U 9.0 U 10.6 U 26	9.0 348 10.6 342 16.6 362		1.5 2.1 2.1 2.8	310 235 456 306	555	ឯភពព	41 19.2 16 35
23	\$0-50910,101803-0,0.5-0687 \$0-50910,101803-0.5,2-0687 \$0-50910,101803-2,4-0687 \$0-50910,101803-4,6-0687	06/09/87 06/09/87 06/09/87	7943 19171 13161 10755		n m 4 4 4 m	255 (5) (117 (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	5.2 0.4 3 7.0 2 4.	3.4 3.4 1 2.4 2 2.5 2 2	4914 1369 2218 2487	20 1 22 1 22 1 17 2	15 13 11 21.1 9 16 20 9		12699 33 26763 24.4 19571 10 18338 115	7 .4 12.2 11 5 7		1549 15 3136 2 2823 3	1574 253 322 767	U 20 U 20 U 10	934 1113 774 390	5555	1.2 U	410 379 363 440	9999	* 3 # %	2 2 2 2

Phase I Soll Metals Results

Cr Co. O.1 Fe. Pb. Li. Ng. Ph. Rg. Ni. K. Rg. Ni. K. Rg. Ni. T.				1	1										8	ncentra	Concentration MC/NG Location Soil Sample	75	ocat fo	n Soll	Semp				Pre	
14 12 9 14270 31 7,7 1585 1763 0 15 962 0 0 344 0 28 16 27 10 15878 31.0 6 1378 2936 0 16 788 0 1.4 302 0 33 22,7 26,5 13.2 29,5 11.7 2561 1232 0 1.4 302 0 33 26 12 14 1608 2842 691 0 1 0 4 2 0 1 0 4 2 0 1 0 4 0 4 0 4 0 4 0 4 0 0 0 0 1 0 4 0 </th <th>Coordinates and Depths Sampled Al Sb As Ba Be Cd Ca</th> <th>Al Sb As Ba Be Cd</th> <th>Sb As Ba Be Cd</th> <th>As Ba Be Cd</th> <th>Ba Be Cd</th> <th>23</th> <th>ষ</th> <th></th> <th>13</th> <th></th> <th></th> <th></th> <th></th> <th>£</th> <th></th> <th></th> <th></th> <th>#</th> <th></th> <th></th> <th>8</th> <th>*</th> <th>2</th> <th>#</th> <th>></th> <th>ង</th>	Coordinates and Depths Sampled Al Sb As Ba Be Cd Ca	Al Sb As Ba Be Cd	Sb As Ba Be Cd	As Ba Be Cd	Ba Be Cd	23	ষ		13					£				#			8	*	2	#	>	ង
12 9 14270 31 7.7 1865 1763 0 13 96 0 1.4 90 0 28 0 1.6 30 0 1.6 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ı</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>İ</th><th></th><th></th><th></th><th>ļ</th><th></th><th></th></t<>									ı	1										İ				ļ		
27 10 1588 11.0 6 1378 2936 1 788 1 4 302 9	SO-52400.101100-0.0.5-0687 06/09/87 9057 U 4.1 278 0.5 2.4 3445	9057 U 4.1 278 0.5 2.4	U 4.1 278 0.5 2.4	4.1 278 0.5 2.4	278 0.5 2.4	0.5 2.4	2.4	1.4 344	3				1427	0 31		-	_			8	Þ	n	344	Þ	8	2
22. 7 5. 5. 13. 2 1898 29. 5 11.7 2561 122. 2 940 0	06/09/87 8552 U 5.7 244	8552 U 5.7 244 0.7 2.6	U 5.7 244 0.7 2.6	5.7 244 0.7 2.6	244 0.7 2.6	0.7 2.6	5.6		87				1587			•				788	>	1.4	302	Þ	33	53
18 7 8 13095 13 7 1608 2684 6911 450 0 10 456 u 22 26 11 16796 39 6 2842 691 0 11 456 u 32 6 2842 691 1 10 456 u 32 471 0 1 1 456 u 32 1 3 1 3 2 471 0 1 1 452 u 45 1 3 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1	06/09/87 15264 U 7.6 151	15264 U 7.6 151 0.8 2.7	U 7.6 151 0.8 2.7	7.6 151 0.8 2.7	151 0.8 2.7	0.8 2.7	2.7		38			.5 13.					•			940	>	2.3	383	Þ	8	36
26 12 14 16796 39 6 2842 691 0 14 839 0 1522 471 0.1 17 650 0 11 252 0 42 19 9 12 13913 41.3 8 1677 471 0.1 17 650 0 11 252 0 42 0 42 0 42 0 42 0 42 0 42 0 42 0 42 0 11 426 0 11 426 0 11 426 0 11 426 0 11 426 0 42 0 426 0 12 426 0 42 0 42 <td< td=""><th>06/09/87 11615 U 4.4 162</th><th>11615 U 4.4 162 0.8 1.9</th><th>U 4.4 162 0.8 1.9</th><td>4.4 162 0.8 1.9</td><td>162 0.8 1.9</td><td>0.8 1.9</td><td>1.9</td><td></td><td>782</td><td></td><td></td><td></td><td>130</td><td></td><td></td><td>16</td><td></td><td></td><td></td><td>6.50</td><td></td><td>Þ</td><td>511</td><td>1.2</td><td>23</td><td>2</td></td<>	06/09/87 11615 U 4.4 162	11615 U 4.4 162 0.8 1.9	U 4.4 162 0.8 1.9	4.4 162 0.8 1.9	162 0.8 1.9	0.8 1.9	1.9		782				130			16				6.50		Þ	511	1.2	23	2
30 15 13 13 3522 471 11 650 1 525 42 <th< td=""><th>on-snam iminon-n n s.neaz nellning 11176 2.6 21 145 1.0 2.5 9175</th><th>11176 2.6 21 145 1.0 2.5</th><th>2.6 21 145 1.0 2.5</th><td>21 145 1.0 2.5</td><td>145 1.0 2.5</td><td>1.0 2.5</td><td>2.5</td><td></td><td>175</td><td></td><td></td><td></td><td>1679</td><td></td><td></td><td>78</td><td></td><td></td><td>1 n</td><td>839</td><td>9</td><td>1.0</td><td>\$</td><td>5</td><td>×</td><td>339</td></th<>	on-snam iminon-n n s.neaz nellning 11176 2.6 21 145 1.0 2.5 9175	11176 2.6 21 145 1.0 2.5	2.6 21 145 1.0 2.5	21 145 1.0 2.5	145 1.0 2.5	1.0 2.5	2.5		175				1679			78			1 n	839	9	1.0	\$	5	×	339
19 9 12 13313 41.3 8 1677 437 0 12 382 0 6.4 424 0 35 15 16 16 16 22507 71 12 2021 1237 0 35 0 4.3 68 0 13 325 0 5.4 34 0 6.4 33 0 4.3 68 0 13 325 0 6.2 346 0 6.2 346 0 6.2 346 0 6.2 346 0 13 325 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0 0 0 0 0 0 0 0	06/10/87 12580 17 6.5 149 1.2 3.9 3	12580 17 6.5 149 1.2 3.9	17 6.5 149 1.2 3.9	6.5 149 1.2 3.9	5 149 1.2 3.9	1.2 3.9	3.9	-	511				180		••	35				95	>	==	22	>	42	8
12 16 16 22507 71 12 2021 1237 0 39 319 0 4.43 0 4.43 68 0 13 325 0 4.43 0 4.23 71 1433 68 0 13 325 0 4.42 94 0 4.43 94 0 4.43 0 4.43 1433 68 0 13 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 6.2 979 0 6.2 344 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 0 4.43 <t< td=""><th>06/10/87 10811 14 21.2 116 0.9</th><th>10811 14 21.2 116 0.9 2.7</th><th>14 21.2 116 0.9 2.7</th><td>21.2 116 0.9 2.7</td><td>116 0.9 2.7</td><td>0.9 2.7</td><td>2.7</td><td></td><td>131</td><td></td><td>19</td><td>9 12</td><td>133</td><td></td><td></td><td>16</td><td></td><td></td><td></td><td>38</td><td>></td><td>•</td><td>124</td><td>5</td><td>2</td><td>13</td></t<>	06/10/87 10811 14 21.2 116 0.9	10811 14 21.2 116 0.9 2.7	14 21.2 116 0.9 2.7	21.2 116 0.9 2.7	116 0.9 2.7	0.9 2.7	2.7		131		19	9 12	133			16				38	>	•	124	5	2	13
13 10 8.5 932 39 7 1433 68 0 135 344 0 23 22 31 16 25043 33 17 3233 711 0 62 979 0 64 428 0 41 26 14 1500 50 14 2367 331 0 16 66 12 428 0 428 0 41 26 15 16 16 16 1676 0 16 60 17 901 0 41 428 0 41	06/10/87 17912 13 21 228 1.7	17912 13 21 228 1.7 3.9	13 21 228 1.7 3.9	21 228 1.7 3.9	228 1.7 3.9	1.7 3.9	3.9		057				225			2				519	D	6.1	435	>	45	23
26 14 15 1500 57 14 3022 348 U 16 6 428 U 41 26 14 15 15 14 3002 348 U 16 62 342 U 428 U 16 367 U 16 16 16 17 369 U 16 16 16 16 17 369 U 41 16 16 16 16 17 366 U 16 16 16 16 16 16 17 31 16 16 16 17 369 U 41 16 <td< td=""><th>7 06/10/87 7911 17 · 11 83 1.0 2.1</th><th>7911 17 -11 83 1.0 2.1</th><th>17 .11 83 1.0 2.1</th><td>.11 83 1.0 2.1</td><td>83 1.0 2.1</td><td>1.0 2.1</td><td>2.1</td><td></td><td>102</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>14</td><td></td><td></td><td></td><td>325</td><td>5</td><td>5.4</td><td>344</td><td>></td><td>ຊ</td><td>12</td></td<>	7 06/10/87 7911 17 · 11 83 1.0 2.1	7911 17 -11 83 1.0 2.1	17 .11 83 1.0 2.1	.11 83 1.0 2.1	83 1.0 2.1	1.0 2.1	2.1		102						1	14				325	5	5.4	344	>	ຊ	12
26 14 15 15300 57 14 3002 348 U 15 562 542 U 7.4 901 U 39 26.3 15 16309 50 14 2367 331 U 15 590 U 7.4 901 U 39 26.3 29 13 19474 68 12 1603 1678 U 16 60 U 7 596 U 41 24 16 10 2130 U 190 1939 U 13 618 U 0 240 U 0	7 06/10/87	24321 11 5.8 224 2.8 4.1	11 5.8 224 2.8 4.1	5.8 224 2.8 4.1	224 2.8 4.1	2.8 4.1	4.1		351				250		•	32				976	>	•	428	>	7	8
26. 15 15309 50 14 2367 331 U 15 599 U 7 901 U 44 26.3 29 12 1603 1678 U 16 0 7 596 U 41 26.3 29 13 1678 U 16	011110011110011111001111111	21. 00 111 20 101	111 00 111	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				27.0							9		_		1662	D	6.2	342	>	*	8
26. 3 19 13 19474 68 12 1603 1678 0 16 16 159 16 16 159 1 0 1 0 16 159 159 0 1 0 1 0 16 159 159 0 1 0 16 159 1 0 1 0 16 159 159 1 </td <th>06/10/87 16019 11 7.2 267 1.0 2.6</th> <th>16019 11 7.2 267 1.0 2.6</th> <th>11 7.2 267 1.0 2.6</th> <td>7.2 267 1.0 2.6</td> <td>7.2 267 1.0 2.6</td> <td>1.0 2.6</td> <td>2.6</td> <td>l</td> <td>505</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>Þ</td> <td>7.4</td> <td></td> <td>Þ</td> <td>33</td> <td>29</td>	06/10/87 16019 11 7.2 267 1.0 2.6	16019 11 7.2 267 1.0 2.6	11 7.2 267 1.0 2.6	7.2 267 1.0 2.6	7.2 267 1.0 2.6	1.0 2.6	2.6	l	505							2					Þ	7.4		Þ	33	29
10 U U 190 139 U U U 240 U 240 U	06/10/87 11258 20 8.8 153 1.0 3.6	11256 20 8.8 153 1.0 3.6	20 8.8 153 1.0 3.6	8.8 153 1.0 3.6	153 1.0 3.6	1.0 3.6	3.6		15	-						91		_	U 16		D	~		Þ	7	8
24 16 10 1680 1057 0 13 618 0 63 960 0 37 24 18 23 2993 32 15 3456 326 0 23 12 3456 326 0 23 12 293 12 2536 478 0 16 1245 0 2.7 1178 0 46 22 15 14 16277 26 11 2761 441 0 16 12.5 0 2.5 0 46 0 2.5 0 46 29 24 15 16 43 43 41 414 0 17 731 0 2.5 0 45 29 25 15 16 13 2630 375 0 17 0 43 0 43 0 2.5 0 43 0 29 14 0 17	06/10/87 1500 U U 25 U U	1500 U U 25 U U	U U 25 U U	U 25 U U	25 U U	n n	n		8										e e		5	>	240	Ð	>	•
27 15 19 23316 32 15 3456 526 U 23 123 12 2536 478 U 16 1245 U 2.7 1178 U 46 22 15 14 12 2536 478 U 16 1245 U 2.7 1178 U 46 28 15 12 2536 478 U 16 1245 U 2.7 1178 U 48 28 15 16 11 2761 441 U 17 1751 U 2.5 10 4.8 24 21 24 13 2917 414 U 17 751 U 3.8 1410 U 29 25 14 15 1994 418 U 17 751 U 4.3 902 U 4.1 4.3 902 U 4.1 4.3 902	2.6 1113	1361 11 10 100 1 0 2.6	100 1 00 1 00 2 6	100 100 2.6	100 1 0 2.6	3.0	9		F							16		_			=	0.5	8	Þ	33	2
27 15 19 23316 53 12 2536 478 U 16 1245 U 2.7 1178 U 46 28 15 14 16277 26 11 2761 441 U 20 878 U 2.5 625 U 29 24 21 24 21 24 17 751 U 3.8 1410 U 29 24 21 24 21 41 414 U 17 751 U 3.8 1410 U 29 25 14 15 19965 68 10 1994 418 U 14 813 U 4.3 902 U 41 27 15 18 18915 43 146 364 666 U 24 1063 U 6 707 U 30 21 15 17 42	22811 U 9.5 176 1.1 4.2	22811 U 9.5 176 1.1 4.2	U 9.5 176 1.1 4.2	9.5 176 1.1 4.2	5 176 1.1 4.2	1.1 4.2	4.2		20													3.0	ş	>	×	3
22 15 14 16277 26 11 2761 441 9 20 878 0 2.5 623 0 29 24 15 26852 39 13 2630 375 0 21 975 0 3.6 1410 0 43 24 21 24 21 414 414 414 415 413 413 41 29 22 14 15 19965 68 10 1934 418 0 14 613 4 43 44 418 0 4.3 902 0 43 27 15 18 18915 43 14 3067 666 0 24 1063 0 4 30 0 34 21 15 18 1787 42 11 1467 321 0 10 10 10 10 30 22	20 20 10 10 11 12011 12011 12011 1 0 7 100 0.88 3 1336	14041 11 0.7 189 0.8 3	11 9.7 189 0.8 3	9.7 189 0.8 3	189	en en	67		336									_		•	>	2.7	1178	>	3	42
28 15 20 26652 39 13 2630 375 U 21 975 U 3.8 1410 U 45 24 21 22 2917 414 U 17 751 U 3.8 1410 U 29 22 14 15 19965 68 10 1934 418 U 14 613 U 4.3 962 U 41 27 15 18 18915 43 14 3067 666 U 24 1063 U 6 1008 U 34 21 15 18 11787 42 11 1467 321 U 11 1701 U 6 707 U 30 21 15 13 176 66 14 1805 0.1 14 590 U 10 30 U 30 U 30 U <td< td=""><th>06/15/87 11686 U 7 151 0.7 2.7</th><th>11686 U 7 151 0.7 2.7</th><th>U 7 151 0.7 2.7</th><td>7 151 0.7 2.7</td><td>151 0.7 2.7</td><td>0.7 2.7</td><td>2.7</td><td></td><td>992</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>5</td><td>2.5</td><td>873</td><td>Þ</td><td>8</td><td>34</td></td<>	06/15/87 11686 U 7 151 0.7 2.7	11686 U 7 151 0.7 2.7	U 7 151 0.7 2.7	7 151 0.7 2.7	151 0.7 2.7	0.7 2.7	2.7		992									_			5	2.5	873	Þ	8	34
21 24 21287 43 9 2917 414 U 17 731 U 3.8 1410 U 29 14 15 19985 68 10 1934 418 U 14 813 U 4.3 962 U 41 15 18 18915 43 14 3067 666 U 24 1063 U 6 1008 U 34 15 7 11787 42 11 1467 321 U 11 1701 U 6 707 U 30 15 13 176 66 14 1805 83 0.1 14 590 U 10 327 U 39	3601 E 1 361 At 11 14416 58/27/200 1820.0 : OTT. 110 1836	1 361 41 11 14419	136 13	136 1 3	136 1	-	3 1038	1038	038							-					5	~	267	D	3	64
14 15 19965 68 10 1934 418 U 14 613 U 4.3 992 U 41 15 18 18915 43 14 3067 666 U 24 1063 U 6 1008 U 34 15 7 11787 42 11 1487 321 U 11 1701 U 6 707 U 30 15 13 176 66 14 1805 83 0.1 14 590 U 10 527 U 39	06/15/87 14275 U 10 144 0.8 3	14275 U 10 144 0.8 3	U 10 144 0.8 3	10 144 0.8 3	144 0.8 3	6.8		1928	928													3.8	1410	5	82	25
27 15 18 18915 43 14 3067 666 U 24 1063 U 6 1008 U 34 21 15 7 11787 42 11 1487 321 U 11 1701 U 6 707 U 30 30 15 13 176 66 14 1805 83 0.1 14 590 U 10 527 U 39					•	•	•		9											911	D	4.3	88	Þ	14	3
27 15 18 18915 43 14 3067 666 U 24 1003 U 9 1005 U 30 21 15 7 11787 42 11 1487 321 U 11 1701 U 6 707 U 30 30 15 13 176 66 14 1805 83 0.1 14 550 U 10 527 U 39	0 8 183 0.8 2.9	13171 U 8 163 U.6 2.9	0 8 183 0.8 2.9	8 183 0.8 2.9	6.2	6.2	۲.۶		ê											2				=	\$	7
21 15 7 11787 42 11 1487 321 U 11 1701 U 0 707 U 30 30 15 13 176 66 14 1805 83 0.1 14 590 U 10 527 U 39	0.8 3.4	11528 4 5 310 0.8 3.4	4 5 310 0.8 3.4	0.8 3.4	0.8 3.4	0.8 3.4	3.4		60					-						9	•	,	3 1	•	, ,	1
30 15 13 176 66 14 1805 83 0.1 14 590 U 10 527 U 39	SO-49240,101350-5,8-0687 06/15/87 9399 6 6 117 0.5 2.3 1617	9399 6 6 117 0.5 2.3	6 6 117 0.5 2.3	117 0.5 2.3	117 0.5 2.3	0.5 2.3	2.3		19					_		•	•••				>	•	È	-	3	7
	7 06/15/87 16445 14 12 90 0.9	16445 14 12 90 0.9 3	14 12 90 0.9 3	12 90 0.9 3	90 0.9 3	0.9	e		8									o			-	2	527	D	6	2

Phase I Soll Metals Results

														පි	ncentr	Concentration MC/KG Location Soll Sample	C/KG L	ocation	1105 ר	Sample	•		_	Date	
&	Coordinates and Depths	Sampled	7	ક્ર	2	ag.	2	2	3	20	3	F	P	. 3	*	¥	H.	Ĭ.	⊭	8	¥	4	Ħ.	>	អ
r.	\$0-51200,99900-0.5,2-0687 \$0-51200,99900-2,4-0687 \$0-51200,99900-4,6-0687 \$0-51200,99900-6,10-0687 \$0-51200,99900-10,14-0687	06/26/87 06/26/87 06/26/87 06/26/87	12020 12621 13575 18798 6545	0 N 0 0 4 1	8 5 7 8 8 8 8	242 1 259 C 270 270 241 128	0.08 2 2 11.2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.8 2.2 2.3 2 2.9 10 3.8 4 3.8 4 3.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2648 2798 10198 4081 1145 1	22 1 21 12 1 23 1 27 1 27 1 27 1 27 1 27 1	19 12 14 13 16 15 18 22 18 22 18 23 18 23 18 23 18 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20850 1 17035 5 21126 2 28105 7 12795 3 324		27 6 22 6 19 8 21 9 11 U 11 16.3 U		1940 1250 2154 -714 2722 1007 3170 1166 814 995 1185 1098		0.4 18 0.4 16 0.4 16 0.26 0.1 30 1.4 7.4	645 681 688 953 4 378 507		0.9 0.7 1.4 1.5	360 635 763 842 486 573		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 6 4 3 3
32	SO-51200, 999015-0, 5, 10-0000 SO-51700, 99975-2, 4-0687 SO-51700, 99975-4, 6-0687 SO-51700, 99975-6, 8-0687 SO-51700, 99975-6, 8-0687 SO-51700, 99975-12, 16-0687	06/29/87 06/29/87 06/29/87 06/29/87 06/29/87	19543 13993 12880 13896 15018		14 13.1 8.6 8.5 3.6	62 2 2 2 8 8	2 11 13 1					88446		•	∢	2886 5- 2044 39 2178 2- 2176 11 2050 19	1677 563 388 258 117	U 25 U 26 U 14 U 12 U 22 U 22	1026 719 367 306 444 474		1.0 1.0 0.5 0.5	549 772 739 785 616 404	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 2 2 2 2 2	2 2 2 2 2 2
33	80-49500, 99800-0.5,2-0687 80-49500, 99800-2,4-0687 80-49500, 99800-4,6-0687	06/30/87 06/30/87 06/30/87	10945 23501 10486	# • •	12.1 13.7 5.5	182 289 146	6.0	3.5 4.1 2.1	37006 3556 3165	2 7 8 18 4 8	12 13 29 28 2 71 9	17 14560 26 30363 17.6 12694		19 6 20 12 9.6 8		8796 2 3359 10 2349 1	246 1018 155	U 15 U 23	5 % S	2 2 2	2.1 0.8 U	25 22 25	555	238	3 2 3
#	SO-52119, 99200-5, 6-0687 SO-52119, 99200-6, 8-0687 SO-52119, 99200-8, 10-0687 SO-52119, 99200-10, 12-0687 SO-52119, 99200-12, 16-0687	06/30/87 06/30/87 06/30/87 06/30/87	10168 9585 15587 14044 11324	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	4.1 6.6 5.5 9.4	140 129 130 151	0.0 0.0 0.0 2.2	3.6 2.7 3.1	36371 2160 1855 3138 3405	2 2 2 2 2	15 12.1 19 8.7 23 9.7 14 12.6			19.2 u 22.3 u 30 8 15 u		8624 4 1194 7 1480 12 1738 2 2244 4	465 792 1216 294 499	U 16 U 11 U 13 U 14	552 663 634 526		2.1 U U U 0.6	552 552 641 641		2 2 3 2 2	* * * * *
38	SO-50325,101300-1,2-0687 SO-50325,101300-2,4-0687 SO-50325,101300-4,6-0687	06/30/87 06/30/87 06/30/87	8446 14275 16996	3.7	13.6 12.0 13.0	156 55 103	0.7	2.2	37139 3602 7070	22 16 19	14 11 8 9. 12 10	80	13562 2 12687 14910	29 t 8 t 9.2 t	U 13 U 2	2076 2076 2824	712 54 123	U 19 U 12 U 12	22.2 23.2	5 5 5	3.2 U	569 447 463	555	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2

Phase I Soil Metals Results

			į												Sono	Concentration MG/RG Location Soil Sample	ž Ž	50 Loc	r ton	So 11 S	• Idua			దే	Dete	
%	Coordinates and Depths	Sampled Al	₹	æ	Sb As Ba Be	2	2	8	3	8 5	1	Or Fe	a.	1	£ 5	1	£	H.	N. K	æ	*	4	Ħ,	>	ន	
%	SO-49100,100500-0,2-0787 SO-49100,100500-2,4-0787 SO-49100,100500-4,6-0787	07/02/87 12209 3.3 4.2 181 0.7 07/02/87 15396 7.2 9.2 99 0.7 07/02/87 18516 5 11.0 70 0.7	12209 15396 18516	3.3	4.2 9.2 11.0	181 99 07	0.7	2.2	3102 2818 3585	22 22	10 11 13 7 8.7 10	15683	83 10 14 34 32 7	13.3 8 6	.3 2442 2230 2282		370 476 62	U 17.8 U 12 U 10	86 385 520	555	0.5 U	649 631 495	,	2 2 2	32 38	
33	SO-49600, 101275-0, 2-0787 SO-49600, 101273-2, 4-0787 SO-49600, 101275-4, 6-0787	07/02/67 13958 5.5 9.2 205 07/02/67 15120 3 4.7 271 07/02/87 13146 U 5.4 80	1395 8 15120 13146	5.5 3 U	9.2 7.4 5.4	9.2 205 4.7 271 5.4 80	0.9	2.7 2.9 1.5	2505 2657 2220	22 22 61	11 14 15 11	14 183 11 230 6.3 100		15 12 17 8 11.2 8			410 374 80	u 21 u 13 u 13	676 482 421	999	8.0 D D	440 772 710	5 5 5	8 4 61	* 2 2	

APPENDIX B

DATA QUALITY

Throughout this sampling effort, analytical data quality was assessed through the use of duplicates and spikes. These additional analyses were performed for all analytical parameters.

All Quality Control Data is presented at the end of this appendix. Overall, no holding times were exceeded and the Quality Control Data is acceptable. Therefore, the analytical data presented in this report conforms to applicable standards of accuracy and precision and is representative of sample conditions at the time of collection.

All data presented in this report will be validated according to the procedures to be presented in the forthcoming Quality Assurance Project Plan (QAPP). This data will then be used to assess overall soil contamination.

MARKET AND THE REPORT OF THE PARTY OF THE PA		
	그 그는 그 아랫 왕이랑 그는 고객(함께 다.)	
	그 그 한 성진 중화를 잃었다. 호텔은 제	
교회회사회 보이는 이 집에 가는 그 그 그 그 때문 때문 때문 다 되었다.		
50 전 10 12 12 12 12 12 12 12 12 12 12 12 12 12	그 그는 한다. 한글은 그는 그 사람은 하지?	
	그는 그렇게 하는 그리지만 된 사람이 받는	
를 받는 하고 있다. 날 마음이 말했다.		
	그는 사람이 함께를 보고 있었다.	
[발발: 경우기 : 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	그 그 전 이상한 경험이 나왔습니다.	
[
# : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1]		
하는 사용되었다. 그 사람들은 사람들은 사람들은 사람들이 되었다. 사용물 사용물 사용 사용 사람들은 사람들이 있다.		
	그는 그는 사람들이 바다 하시다 살아 다른	
경영합니다. 중에 가장 : 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
[1] 2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	그리는 기본도 살살을 보고 싶었다. 말	
	그는 이번 보았다. 그는 그는 이번 때 때	
	그는 사람이 가장하다 하는 생각하다	
	그는 그 사람들이 가능한 문화가 있다. 그 문화 그는 그 사람들이 가는 그들이 가는 것이다.	
	그 그는 글목을 잃다 한 번째 모습니다.	
	그는 그리 아일 있습니다. 이 호텔 200 100	
	이 그 함께 많아 휴대로 하다. 이 하다	
보 겠다. 현재, 중인 문학자 이 보고 보는 모든 보다 있다.		되인 무슨데 그렇
경기를 보고 있다. 경기를 보고 있는 것이 되었다.	이 그리고 말하다 하는 민준이를 했다.	

Mr. Daryl Roberts, Chief Bureau of Environmental Epidemiology Missouri Department of Health Post Office Box 570 Jefferson City, Missouri 65102

Mr. Bill Dieffenbach
Missouri Department of
 Conservation
Post Office Box 180
Jefferson City, Missouri 65102

Mr. J. D. Berger Oak Ridge Associated Universities Post Office Box 117 Oak Ridge, Tennessee 37831-0117

cc w/enclosure:
Document Control
Repositories